
J .  Fluid Mech. (1972), vol. 51, part 2, p p .  363-383 

Printed in Great Bri tain 

363 

Laminar dispersion in curved tubes and channels 
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Dispersion in curved tubes and channels is treated analytically, using the velocity 
distribution of Topakoglu (1967) for tubes and that of Goldstein (1965) for curved 
channels. The result for curved tubes is compared with that obtained previously 
by Erdogan & Chatwin (1967) and it is found that the presentdispersion coefficient 
contains the Erdogan & Chatwin result as a limiting case. 

The most striking difference between the results is that Erdogan & Chatwin 
predict that the dispersion coefficient is always decreased by curvature if the 
Schmidt number exceeds 0.124, which is the ease for essentially all systems of 
practical interest. In  contrast, the present result, equation (76), predicts that the 
dispersion coefficient may be increased substantially by curvature in low Rey- 
nolds number flows, particularly in liquid systems which would be of interest in 
biological systems. 

Two competing mechanisms of dispersion are present in curved systems. 
Curvature increases the variation in residence time across the flow in comparison 
with straight systems and this in turn increases the dispersion coefficient. The 
secondary flow which occurs in curved tubes creates a transverse mixing which 
decreases the dispersion coefficient. The results demonstrate that the relative 
importance of these two effects changes with the Reynolds number, since the 
dispersion coefficient first increases and then decreases as the Reynolds number 
increases. Since secondary flows are not present in curved channels the dispersion 
coefficient is increased over that in straight channels for all cases. 

1. Introduction 
The problem of the dispersion of a solute in laminar flow through ducts which 

produce straight streamlines has been investigated in a series of papers by Gill 
and coworkers (Gill 1967a, b; Gill & Anathakrishnan 1967; Gill, Ananthakrishnan 
& Nunge 1968; Sankarasubramanian & Gill 1971). Recently Gill & Sankarasub- 
ramanian (1970, 1971) presented an exact analysis of the unsteady convective 
diffusion equation and Chatwin (1970) investigated the approach to the asymp- 
totic dispersion model. 

Erdogan & Chatwin (1967) treated the problem of dispersion in curved tubes 
in a manner similar to  that developed by Taylor (1953, 1954a, b) for straight 
tubes using the velocity distribution obtained by Dean (1927,1928). McConalogue 
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(1970) developed an extended version of the velocity distribution in curved tubes 
which is valid for larger Dean numbers and used this to solve the dispersion prob- 
lem in cases where molecular diffusion can be ignored. Both of these studies 
indicate that axial dispersion is decreased by the secondary flow present in curved 
tubes, although Erdogan & Chatwin found that the Schmidt number must exceed 
0.124 for this result to hold. 

Certain limiting assumptions were made in these studies and it is the purpose 
of this work to relax these assumptions and thus to provide a more complete 
description of the dispersion process in curved tubes, particularly in the low 
Reynolds number range for small values of the curvature. The curved channel 
system, which has not been investigated previously, provides an interesting case 
for comparison since flow in this geometry is not complicated by the presence of a 
secondary flow. 

The analytical solution of the convective diffusion equation developed by Gill 
includes flows having both angular and time dependence. The method will be 
extended here to include the curved tube and channel geometries. Furthermore, 
the velocity distribution obtained by Topakoglu (1967) will be employed in the 
curved tube model such that the assumption made by Dean and used later by 
Erdogan & Chatwin and McConalogue, that the ratio of the tube radius to the 
radius of curvature is much less than unity, can be relaxed. 

The most important feature of the theory of dispersion as introduced by Taylor 
(1953) is that it  enables one to describe the average concentration distribution in 
a complex three-dimensional system by the solution of the one-dimensional 
convective diffusion equation. Then the primary problems are first to determine 
from first principles the dispersion coefficient associated with the one-dimensional 
dispersion equation and second to determine when the one-dimensional dis- 
persion equation is a valid approximation. 

2. Analysis 
2.1. Formulation of the dispersion model 

I n  the development for a binary system which follows, it is assumed that the 
bounding walls are parallel and impenetrable, the density of the mixture is con- 
stant, the fluid is incompressible and has a velocity independent of the co- 
ordinate in the main flow direction. The convective diffusion equation which 
describes the local concentration C’ of solute in operator form becomes 

acpt + v.  VC’ = V .  DW, (1) 

where D is the molecular diffusion coefficient. Let V = a fixed volume in space 
bounded by the walls of the conduit and two planes which are perpendicular 
to  the main flow direction, A = surface area of V ,  A,  = the cross-sectional area of 
the conduit perpendicular to the main flow direction, andn = unit normal vector 
to A ,  directed outward. By integrating (1) over V and applying the divergence 
theorem one gets 

C’dV = / A  (DVC’- vC’) .ndA. (2) 
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To put this result into a more useful form consider the orthogonal co-ordinate 
system (q,, q,, q3) where q2 is the co-ordinate in the main flow direction and h,, h,, 
h3 are the associated metrical coefficients. The metrical coefficients are indepen- 
dent of q2 because the cross-sectional area does not change in the flow direction. 
Thus 

(3) 

I n  this notation, q2 is assumed to have dimensions of length and S is dimension- 
less. Because the bounding walls are solid and impenetrable, the velocity v and 
the mass flux in the direction parallel ton  vanish at  the walls. Thus the argument 
of the integral on the right-hand side of (2) vanishes at  the walls and the only con- 
tributions to the surface area integration are obtained from integrating over the 
cross-sectional areas. 

Substituting (3) in (2) and using the arguments above to simplify the right- 
hand side leads to 

dV = h,h,h3dq,dq,dq3 = 4 q 1 ,  q3)dqzdAx. 

S(q,, q3,) C' dA,dq, = 1 (g (4) !&? - vqt C' 
A ,  aq2 

where vg, is the component of v in the q2 direction. The result of differentiating 
(4) with respect to q2 and assuming D is constant is 

Now define a new co-ordinate in the main flow direction moving with the average 
velocity as 

(6) 
- 
q2 = q2-vq2rnt9 

where 

Equation (5), in the ( t ,  q,, ij,, q3) co-ordinate system, becomes 

Define the volume average concentration 8' in an element of length dq, in the flow 
direction as 

Using this definition, (8) can be written as 

The solution of (10) is now formulated (Gill & Sankarasubramanian 1970) as 
m 

j=1 
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Equation (12) is in the form of the generalized dispersion model with time- 
dependent coefficients, which for this problem is 

Upon comparing (12) and (13), the dispersion coefficients k, are given by 

kl = Z)nzm(l-A,/B), (14a) 

For straight circular tubes these expressions reduce to those given by Gill & 
Sankarasubramanian (1970). A development for the curved tube geometry which 
demonstrates the details of calculating the dispersion coefficients is given in what 
follows. 

2.2. Curved tube system 

In  the co-ordinate system shown in figure 1 the co-ordinates r ,  R0 and aq5 are 
identified with ql, q2 and q3 respectively. It is easily demonstrated that k, reduces 
to zero in curved tubes and channels. For example, in a curved tube of radius a 
and radius of curvature R 

and hence (14a) yields k, = 0. e - R i  

X 
FIUURE 1. Schematic diagram of the curved tube. 
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In  dimensionless form, the equations of continuity and motion for steady, 
fully developed flow of a constant property fluid are 

(15) 
au WCOS# u 1 a v  vsin# -+ +-+--- 
ay ~ + y c o s $  y yaq ~ + p o s $ = ~ ’  

Here u, w and v are the dimensionless velocity components corresponding to 
(r,  8, $) respectively with Wo,  the centre-line velocity in a straight pipe with a 
radiusaand the same pressure gradient as exists along the centre-line in the curved 
pipe, used as a reference. Additional dimensionless quantities include y = r/a, 
A = R/a, Re = Woa/v, p = P/pW;. Upon recognizing that the boundary condi- 
tions introduce no further parameters, the functional dependence of the velocity 
can be written as 

v = V(Y, $, A, Re). 

Dean (1927, 1928) and McConologue & Srivastava (1968) solved these equa- 
tions for the special case of 

A-1 < 1, (20) 

that is, the case when the ratio of the tube radius to the radius of curvature is very 
small. This assumption brings about a considerable reduction in the number of 
terms retained in the equations since it allows the following simplifications : 

A+ycos$ g A. (23) 

Because of these simplifications the parameters h and Re of the original problem 
are combined into a single parameter A-IRe2 which is called the Dean number. 

Topakoglu (1967) avoided this assumption and solved the complete set of 
equations by introducing a stream function @ and expanding both w and $ in a 
series using A-1 as the perturbation parameter. The zero-order term in the series 
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for w is the parabolic profile for flow in a straight tube. The results given by Topa- 
koglu are in the form 

W ( Y , $ , A )  = w,(Y)+h-1w,(Y,$)+h-2w,(y,$)+..., P 4 a )  

%4Y,#,h) = Ilrl(Y,#)+~-111r,fY,$)+~-z31.,(y,$)+ ..., (24b) 

a’ (24c) 
(A+ y COS $) ay a@ v(y,$,A) = 

1 

$/(A+ y cos 9) V’ where u(y ,  $, A)  = - 

and the functions necessary to solve the dispersion equation are given in the 
appendix. 

In  the (7, y, 6,$) system the dimensionless convective diffusion equation for 
the concentration C is 

(25) 
1 a2c sin$ aC 1 a2c 

y 2 a p  y ( A + ~ c o s $ )  a$ ( A + ~ C O S @ ) ~ Z F ’  +--- -+ 
where Pe = W,a/D, r = tD/a2 C = C’/C,. 

The system is assumed to be devoid of solute initially and at  time zero a step 
change in solute concentration, C‘ = C,, is introduced at 6 = 0. The initial and 
boundary conditions are thus 

C(0, y, $, 8 )  = 0, C(7, Y, $, 0) = 1, (261, (27) 

(30) 
ac 
aY 

The assumption of equation (20) relating to the curvature, which enables one 
to use (21), (22) and (23), was employed by Erdogan & Chatwin (1967) to simplify 
the convective diffusion equation in a manner similar to that used for the equa- 
tions of continuity and motion. Here we retain the complete convective diffusion 
equation (25). 

The S function introduced in $2.1 is l+(r /R)cos#  for curved tubes. If the 
assumption related to the curvature is employed, then this reduces to unity, and 

a,nd the area average concentration are equal. 
From the statement of the problem the functional dependence of the concentra- 

C(r,  0,$,8) and - (r,0,$,6) finite. 

tion can be written as 
C = C(r,  y, $,8, A, Pe, Re). (31) 

Since the PBclet number Pe is the product of the Reynolds and Schmidt numbers, 
the PBclet number dependence may be replaced by the Schmidt number S c  in 
(31). 
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2.3. Curaed channel 

The curved channel, shown schematically in figure 2, is most conveniently treated 
in cylindrical co-ordinates. The convective diffusion equation and associated 
boundary conditions are 

y = r/h - A, h = R/h, Pe = hW,/D. 

For curved channels, the S function is r/R. If h $ 1, this reduces to unity and c 
reduces to the area average concentration. 

FIGURE 2. Schematic diagram of the curved channel. 

The dimensionless velocity distribution using the mean velocity W, as reference 
is given by Goldstein (1965) and may be written as 

w = 2(h-1) 

4h 

2.4. Method of solution 

To generate the dispersion coefficients it is necessary to determine the 4. functions 
introduced in (11). Here we shall be concerned only with the large-time solution 
so that the dispersion model, truncated after two terms on the right-hand side 
of (13) such that the second derivative is the highest one retained, is an accurate 
representation of the results. Also, only the steady-state part of the dispersion 
coefficients are required. Higher-order coefficients and the time-dependent parts 
of the dispersion coefficients become tedious to calculate for curved tubes because 
the solution for the velocity distribution is in the form of a complicated series 
expansion. 

Following the development given in § 2.1, but introducing dimensionless 
groups, let the dimensionless counterpart of ij2 be 

X ,  = (h /Pe)  8 -  W,T, 

24 

(37) 
F L M  5 1  
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where w, is unity for the curved channel and 
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for the curved tube. Since the curved tube is the more important case we shall 
develop the dispersion model solution using this configuration. The curved chan- 
nel problem is relatively straight-forward and only the important results will be 
given. 

To solve (25)’ transform it to (7, y, X,, $) co-ordinates and let 

where thefj’s are the dimensionless counterparts of the 4 ’ s  in (11) and 

The process of distributing c is assumed to be described by 

aC a i 8  - == I: &- a7 i=l ax;’ 
which corresponds to (13) in dimensionless form. Only the truncated form of 
(41) will be considered here and since K, = 0, 

Equation (42)’ together with an expression for K,  derived from first principles, 
is the essence of the theory of dispersion. That is, under certain conditions which 
are frequently met in practice, (42) enables one to determine very simply the 
concentration distribution in a complex convective diffusion system. From 

(42)’ an+lC;’lar ax: = K, an+=Cpx:+2 (43) 

if K ,  is independent of X,. Equations (42) and (43) become exact only asymptoti- 
cally as T + O O .  However, for straight tubes and parallel plates the region of 
validity of this assumption has been studied (Ananthakrishnan, Gill & Barduhn 
1965; Gill & Ananthakrishnan 1966, 1967; Gill et al. 1968; Gill & Sankarasubra- 
manian 1970) by both approximate and exact analytical, and exact numerical 
calculations, and criteria for the validity of (42) have been given. For example, 
with laminar flow for PBclet numbers > 100 in a tube with a step change in inlet 
concentration equation (42) is an excellent approximation if tD/a2 2 0.8. It has 
also been shown (Gill & Ananthakrishnan 1966) that equation (39) is an accurate 
solution for the local concentration, C under the conditions for which (42) is 
valid. It will be shown later for the curved tube that equation (42) is a good 
approximation if r 2 i0iK$9. 

The problem of finding K ,  for flow in a curved tube is more complicated than 
for a straight tube because of the existence of transverse and angular convection 
currents in the former. However, this difficulty is overcome by the perturbation 
expansions in A-l which will be described subsequently. 
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After substituting (39), (42), and (43) in (25) and equating the cefficients of 
with respect to X ,  to zero the following system of equations like derivatives of 

is generated. 

W 

(i = 1,2,  ...). (46) 
The initial and boundary conditions become 

follows from (39) and (40). 
The solutions of (44) -(46) are now formulated as 

fl = fSl(Y, #) +hI(T, Y, 9), 
fi = fS2(Y> 4) f h2P, Y, 4), 

f i + z  = fsi+2(r, Y, $) +hi+&, Y, $)> 
where the h functions account for the transients which vanish as r grows large. 
Up to this point the solution of the curved channel system parallels that of the 
curved tube. However, because the velocity distribution for the tube is given in 
the form of a series expansion in A-l it is now necessary to formulate the fs 
functions and the dispersion coefficient as 

m 
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This step is not needed for the curved channel since the velocity distribution 
is given in closed form. It will be shown below that three terms in the expansions 
for thef, functions are sufficient to calculate the first three terms in the expansion 
for K,. Since only three terms in the velocity distribution are available at present, 
it would require considerably more effort to extend the calculation of K,. 

To find the dispersion coefficient the f,, function is required. On substituting 
(51), (24a), (24b) ,  (24c), and (54) into (44) and considering only the time-inde- 
pendent part, multiplying through by ( A  + y cos $) and equating coefficients of 
like powers of h to zero one has 

wo -worn = v2g10, (57) 

Here 

Higher order functions may be obtained similarly; second-order functions are 
sufficient for our purposes here. 

Since glo is the counterpart of the straight pipe solution, 

Equation (58) can be rewritten in the form 

and hence the solution is of the form 

where G, is identically zero and L,, and G,, are given in the appendix. In a similar 
manner (59) can be written 

v2912 = L,,(Y) cos 2$ + G ( Y )  

and g12 = G12(Y) cos24 +G2(Y) ,  (63) 

with L, and G2 tabulated in the appendix. 
With three terms in the f,, function known it is possible to compute the first 

three terms in the dispersion coefficient expansion. Upon substituting ( 51), (521, 
(24cc), (246), (24c), (54) and (55 )  into (45), considering only the time-indepen- 
dent part, and multiplying through by ( A  + y cos $)2 and equating coefficients 
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of like powers of h to zero, one obtains for g20, g21 and g22 

KZO - (1/Pe2) + (wo - Won&) 910 = v2gzo, 

K21+ 2~ cos 9 Kzo + ( ~ 1  -wim + Y W ~  cos 9 - 2~ cos 9worn) 910 + ( ~ 0  - wwn) 911 
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(64) 

Since g,, is the counterpart of the straight pipe solution it is obtained immedi- 
ately as 

and K2, = (1/Pe2)+&. 

Equation (65) can be rewritten in the form 

V2g,1 = L d Y )  cos 4 + K,, 

and hence the solution is of the form 

where 

The functions L,, and H,, are given in the appendix. In view of the boundary 
condition given by (48) 

(dHlldY),= 1 = @ 

and thus K,, = 0. (69) 

It can also be demonstrated that H ,  vanishes. 
Equation (66) can be rewritten in the form 

v2g,, = K,, + L,,(Y) cos 2 4  + L2(Y)  (70) 

and hence 9 2 ,  = H22(Y) cos 24 + H,(Y), (71) 

where (72) 
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Since (dH,/dy),,, = 0 integration of (72) yields 
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The function L, is listed in the appendix. 

demonstrated that the dispersion coefficient for the curved channel is 
By proceeding in a manner similar to that used for the curved tube it is easily 

where 

3. Results and discussion 
Two competing mechanisms occur in curved systems and have opposite 

effects on the dispersion coefficient. First, curvature tends to increase the varia- 
tion in residence times across the flow. This occurs because particles in any cross- 
section have different distances to travel to sweep out an angle 8 and this increases 
K,. In contrast, the circulation which occurs in curved tubes, but not in curved 
channels, creates transverse mixing which decreases the dispersion coefficient. 

3.1. Curved tube 

The dispersion coefficient for the curved tube, based on the velocity distribution 
of Topakoglu, is calculated by the present approach to be 

xc2 + - 
43 log 200 I K - - ( j eZ  -+- l i 2 )  + (576, x 160 [ -15840 4Re4 2569 

2Re2 [Exc 254971 +[ 419 
'5576~ 144 60 13440 8 x  15x96  

Equation (76) is obtained by substituting (68)) (69) and (73) in (56) and ignoring 
terms containing h raised to powers of - 3 or less. It can be shown that using the 
same method and the velocity distribution of Dean one obtains 

xc2+m ) (77)  
log I 4Re4h-, [ 2569 

K 2  = (A+&) +5762x 160 15840 

which is the same as that obtained by Erdogan & Chatwin and is contained in the 
result given by (76). That is, given a particular velocity distribution, the present 
approach and that of Erdogan & Chatwin yield the same expression for the dis- 
persion coefficient. However, the present approach provides one with a more 
complete description of the concentration distribution. 

Since K,  is an even function of A, the truncated series represents a one-term 
correction to the straight pipe case under a constant pressure gradient which is 



Laminar dispersion in curved tubes and channels 375 

correct to the third-order because K,, = 0. Hence, for the velocity distributions 
used, both (76) and (77) are correct to the third-order and the differences be- 
tween them are due to differences in the velocity distribution used and the intro- 
duction of the simplifications of (21), (22) and (23) used in (25) to obtain (77). 
Comparison of (76) and (77) shows that the use of Dean’s velocity distribution 
and these simplifications results in the loss of the last two terms in (76). 

As is always the case the question of series convergence is important in deter- 
mining the accuracy of the truncated result. However, to investigate the con- 
vergence it is necessary to find at  least the K,, term in the expansion of K ,  given 
by (56). This would require the fourth- and fifth-order correction terms in the 
velocity and stream function expznsions given by (24n) and (24 b)  which are not 
yet available. 

The differences between (76 )  and (77) are due entirely to the velocity distribu- 
tions used and the assumptions represented in (21), (22) and (23), and not to the 
methods employed to calculate K,. Therefore, by comparing the predictions 
of the model used here, model NLG, and that of Erdogan & Chatwin, model EC, 
one can determine the values of the parameters for which the use of (21),  (22), 
and (23) and the assumptions made in determining the velocity distribution are 
most critical in calculating the dispersion coefficient. 

First, it should be noted that the terms of the coefficient of A-2 in (76) are multi- 
plied by Re4, Rea and Re0 respectively. Therefore, we may expect the Re4 term to 
dominate at  large Reynolds numbers in which case (76) and (77) would yield 
essentially the same results. Second, since for real physical systems the Schmidt 
number is always greater than 0.12, the Re4 terms always decreases the dispersion 
coefficient. In  constrast, the ReQ term always increases the dispersion coefficient 
as does the Re2 term if Sc > 3.7. This leads to the most striking qualitative 
difference between models EC and NLG. Namely that the former predicts that 
transverse convection dominates and therefore the dispersion coefficient is 
decreased by curvature in essentially all physical situations of practical interest, 
while model NLG predicts that in low Reynolds numbers systems, and particu- 
larly in liquid systems, the dispersion coefficient may be increased substantially 
by curvature. 

One can infer the physical mechanisms which contribute to the various terms 
in the coefficient of A-2 in (76). The term involving Re0, which always increases 
the dispersion coefficient, occurs because of axial molecular diffusion and elonga- 
tion of the distribution of the velocity component in the direction of flow. The 
terms involving Re2 and Re4 reflect the competing effects of velocity profile 
elongation, which increases dispersion, and transverse mixing caused by the u 
and v components of velocity, which decreases it. At higher Reynolds numbers the 
Re4 term dominates as does the effect of more intense transverse convection which 
occurs a t  higher Reynolds numbers. However, at lower Reynolds numbers the 
Re2 term is more important and since transverse mixing is not as intense in this 
region the result is an increase in dispersion unless the Schmidt number is less 
than approximately 3.7. 

To make comparisons between the two models, the results for models EC given 
in equation (3.16) of the paper by Erdogan & Chatwin (1967) which depend only 
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Re 

FIGURE 3. Curved tube correction to the dispersion coefficient normalized by the straight 
tube dispersion coefficient w. Re for h = 2 with Sc  as parameter. ----, Erdogan & Chatwin 
(1967); -___ , this study. 

0.2 

0 

- 0.2 

,$i -0.4 

-0.6 

-0.8 

- 1 .0 

I I I 1 I I 1 

Re 

FIGURE 4. Curved tube correction to the dispersion coefficient normalized by the straight 
tube dispersion coefficient 95. Re for h = 10 with S c  as a parameter. ---- , Erdogan & 
Chatwin (1967); _____ , this study. 

on the Dean and Schmidt numbers were converted to the three parameter sys- 
tem of this paper by breaking up the Dean number into the curvature ratio and 
the Reynolds number. These and the present results are plotted in figures 3 to 5 
as the ratio h-2K2,/K=,, us. Re with the Schmidt number as parameter for h = 2,  
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10 and 100. Because these graphs tend to obscure differences in the sma,ll Rey- 
nolds number region the coefficients of h-, in (76) and (77) are given in table 1 as 
a function of Re for Sc  = 1.0 and 100. The dispersion coefficient has been tabu- 
latedfor h = 2,10,15,100,860,1000, Sc = 0~1 ,0~5 ,1~0 ,10-0 ,100 ,560 ,  for several 
Reynolds numbers 2 0.1 elsewhere (Lin 1969). Figure 3 for h = 2 demonstrates 
the large differences between the predictions of the two models for h = 2. For 

0 

- 0.2 

-0.6 

-0.8 

- 1.0 

Re 

FIGURE 5.  Curved tube correction to the dispersion coefficient normalized by the straight 
tube dispersion coefficient va. Re for h = 100 with S c  as a parameter. -- , Ergodan & 
Chatwin (1967); ~ , this study. 

model NLG the correction to the straight pipe dispersion coefficient is positive 
for small Reynolds numbers and then becomes negative as the Reynolds number 
increases for all Schmidt numbers. Note, for example, a 40 yo increase in K,  a t  
Sc = 0.5, Re = 20 and also that K ,  is decreased only if Re > 30. Figure 4 shows 
that this effect is still present at  h = 10 but to a less notable degree. This type of 
behaviour is not possible with model EC since for this model the dispersion co- 
efficient is reduced by curvature if the Schmidt number is greater than 

(33 x 109/2569 x 90)i z 0-124. 

Tabulated results indicate that h-2K,,/K,, is positive for some range of Re at all 
Sc  and A, but that the magnitude may be so small as to be negligible. Thus on 
figure 5 for h = 100 no significant increases in K ,  are shown. 

Clearly, the curved pipe dispersion coefficient becomes increasingly different 
from the straight pipe result as the Reynolds number increases. The limitations 
of the straight pipe result as an approximation to the curved pipe solution can be 
inferred from figures 3 to 5. If one arbitrarily specifies the limit of the straight 
pipe as occurring when ~h-~K2,[ /K, , ,  < 0.05, the ranges of parameters listed in 
table 1 for the maximum values of the Re may be established as indicated. The 
values listed in table 2 again demonstrate that the differences between the two 
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models are at  relatively small values of h and are less pronounced at  larger values 
of the Schmidt number. From table 2 it is clear that the straight pipe results are 
accurate over a larger range of Reynolds numbers for decreasing Sc at  constant 
h or for increasing h at constant Sc. 

Re 

3 
6 

12 
18 
24 
30 
36 
42 
48 
54 

0.5 
1.0 
2.0 
3.0 
4.0 
5.0 
6.0 
7.0 
8.0 
9.0 

10.0 

Coefficient of A-2 

Equation (76) Equation (77) 

s c  = 1.0 

0.651507 x 10-1 
0.434042 x 10-i 
0.343671 x 10-i 
0.263976 x 10-i 
0.149435 x 10-1 

- 0.175084 x lo-' 
-0.254791 x 10-1 
- 0.583371 x 10-l 
- 0.102773 
-0.161601 

s c =  100 

0.380660 x 10-l 
0.387765 x 10-1 
0.405248 x 10-1 
0.385781 x 10-1 
0.255909 x 10-1 

- 0.870353 x lo-' 
- 0.775058 X 10-l 
-0'1969458 
- 0.386088 
- 0.666933 
- 1.06441 

- 0.974494 x lo4  
- 0.155919 x 
- 0-249471 x 
- 0.126294 x lo-' 
- 0.399153 x lo-' 
- 0.974495 x lo-' 
- 0.202071 x lo-' 
- 0.374362 x 10-1 
- 0.638644 x 10-l 
- 0.102298 

- 0.763806 x 
- 0-122209 x 
- 0.195534 x lo-' 
- 0.989893 x lo-' 
- 0.312855 x lo-' 
- 0.763799 x 10-l 
- 0.158383 
- 0.293424 
- 0-500568 
- 0.801 81 3 
- 1.22209 

TABLE 1. A comparison of the coefficients of h-' in (76), the result of the present analysis 
and (77), the results of Erdogan & Chatwin (1967), as a function of Re for S c  = 1.0 and 100 

Model NLG 

Remax 
h\Sc 0.1 0.5 1.0 10.0 100 560 

2 0.1 0.1 0.1 0.1 0.1 0- 1 
10 41 37 13 0.1 0.1 

100 156 118 38 12 11 
- 110 35 5 860 

- 

- 

- - 

Model EC 

Rema, 
h\Sc 0.1 0.5 1.0 10.0 100 560 

2 - 29 19 - 

100 174 121 38 12 11 
860 - 110 35 5 

- - 

10 - 58 39 12 4 - 

- 

- - 

TABLE 2. Maximum values of the Reynolds number for which the straight pipe result 
predicts the dispersion coefficient in a curved pipe accurately. "he criterion used is 
Ih-2K,,I/Kzo < 0.05 
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One of the most striking results shown in figures 3 to 5 is the limitation on the 
magnitude of the Reynolds number imposed by the constraint that K ,  > 0. This 
is due to the limitation on the number of terms available in the velocity distribu- 
tion and demonstrates the need for the determination of higher order terms in the 
velocity distribution. 

As discussed in $2.4, the minimum time at  which the dispersion model, equa- 
tion (42), applies is finite and within the range of practical interest for straight 
tubes and channels. Also (39) gives the points concentration when (42) holds. 
It is expected that similar behaviour will be found for curved systems and there- 
fore it is possible to develop an approximate expression for the minimum time. 
The dispersion model fails to satisfy the condition at  the entrance exactly, 
equation (27), except as 7 --f 00. However, in the region of validity of the dispersion 
model this condition will be satisfied to a good approximation for finite 7 and it 
can be demonstrated that if 

where fl,, is the largest value of fi assumed at any transverse location, is used 
as a criterion for determining the minimum time ail excellent approximation of 
the results obtained from exact solutions for straight tubes and channels can be 
generated. Applying this criterion to curved tubes yields, within limitations to 
be described below, 

For example, with h = 2, Sc = 0.5 and Re = 20, K ,  = 0.0212 and (79) yields 
T~~~ 2 3-2. It is worth noting that (79) also yields a reasonable estimate for 
straight tubes for all PBclet numbers. 

In developing (79) two factors were taken into account. First, the results as 
K ,  -+ 0 are uncertain because of the necessity to truncate the expansion for K,  
as a one-term correction to the straight tube case. Second, the most interesting 
practical results given here are for Schmidt numbers characteristic of gases 
(0-5, 1.0) and liquids (100, 560). From these considerations (79) was developed so 
as to yield a maximum error of 13 yo in estimating the T , ~ ~  which satisfies (78) for 
Re less than the values shown in table 3. 

h\SC 0.1 0.5 1.0 10 100 560 
2 20 20 20 14 5 2 

10 60 60 48 20 8 3 
100 210 210 204 72 24 10 

TABLE 3. Maximum values of the Reynolds number for which T,,,, for curved tubes may be 
predicted from (79) within the restriction given by (78) 

3.2. Curved channel 

The curved channel dispersion coefficient given by (74) and normalized by 
dividing by the straight channel result given by Phillip (19631, see equation (80),  
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is plotted against A ,  with the P6clet number as a parameter, in figure 6 : 
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FIGURE 6. Normalized dispersion coefficient in a curved channel, K2/K8,c, ,  plotted against 
the curvature ratio A,  with the PBclet number as a parameter. 

Since the velocity distribution is known exactly for the curved channel the 
dispersion coefficient is also exact. The lengthy expression for the dispersion co- 
efficient is given by Lin (1969). Here the effect of curvature is only to increase 
the dispersion coefficient above that for straight channels. This is due to the 
asymmetry of the velocity profile since the effect is more pronounced at  small 
values of A, where the maximum velocity is closer to the inner wall. Solute moving 
at the maximum velocity in a curved channel has a shorter distance to move to 
reach any axial position than solute moving near the outer wall. Hence, relative 
to the straight channel the solute tends to spread out more, even though the 
maximum velocities in both systems are about the same. Thus the dispersion 
coefficient is larger for the curved system. The curve for Pe = 100 on figure 6 
represents the situation when axial molecular diffusion is essentially negligible 
and so the curves for all larger Pe lie on that for Pe = 100. As the PBclet number 
is decreased at  constant h the ratio of the dispersion coefficients decreases 
because axial molecular diffusion contributes an increasingly larger fraction to the 
total dispersion effect. Furthermore, (74) and (80) reveal that for a given Phclet 
number molecular diffusion contributes a greater fraction of the total dispersion 
effect in flat plates than in curved channels. 

Applying the criterion developed in Q 3.1 for the minimum time for which the 
dispersion model applies to the curved channel system yields 
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This equation is a good approximation for all values of h and Pe in the curved 
channel case and for all values of Pe in the straight channel. 

It is important to note that the egect of curvature has been to markedly in- 
crease the dispersion coefficient for all values of the parameters for the curved 
channel, This is the opposite of the result obtained for curved tubes, where the 
theory predicts a decrease in the dispersion coefficient in curved systems for all 
but very small Reynolds numbers. This is due to the strong influence of radial 
mixing brought about by the secondary flow which is present in curved tubes but 
absent in curved channels. Although the asymmetry in the axial velocity is still 
present, this effect is evidently overcome by the secondary mixing in the radial 
direction as the Reynolds number increases such that the dispersion coefficient 
is decreased rather than increased in curved tubes. 

4. Conclusions 
The dispersion coefficient for laminar flow in curved tubes and channels has 

been determined analytically by a dispersion model which allows an accurate 
computation of the concentration distribution once the region of applicability 
of the model has been reached. The minimum time required for the dispersion 
model to apply has been estimated by an approximate procedure which is known 
to give accurate results in the case of straight tubes and parallel plate systems. 
In contrast to a previous analysis, it is found that the dispersion coefficient for 
curved tubes may be increased substantially above that for a straight tube with 
the same pressure gradient as that which exists along the centre-line of the curved 
tube, particularly at low Reynolds number flows in liquid systems. The mechan- 
isms contributing to the behaviour of the dispersion as a function of the Reynolds 
number have been discussed, the main opposing factors being the asymmetric 
axial velocity distribution, which tends to increase dispersion, and the secondary 
flow, which decreases it. 

Since the curved channel also has an asymmetrical axial velocity distribution 
but no secondary flow, dispersion is generally enhanced in the curved system as 
compared to the straight one. 
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Appendix 
The full expressions for w,(y, +), L,(y), L,,(y), G,(y) and H2,(y) are lengthy 

and are not given here. Detailed expressions for these functions will be provided 
by the authors upon request. The other functions mentioned but not given ex- 
plicitly in the main body of the text are as follows. 

WO(Y) = 1 - Y2, 

wl(y,q5) = wll(y)cosq5 = -~wO(y)cosq5[1- (Re2/8640)(19-21y2+9y4-g6)]y, 

W2(Y, $1 = W20(Y) + W22(Y) cos 2 6  
1 

Worn = 2 ,  

wzrn = - 

Wlrn = 0, 

1541Re4 528Re2 1 
5762x 2 5 2 0 0 - 5 2 5 7 6 2 % '  

k1 = kl1(y) sin4 = -- wisin4 (4 - y2) y, 
Re 
288 

Re2 
80640 

Re 
$ - - 5760 -y2w;sin2q5 (16-7y2)-- 

1 
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